US009110721B2

a2 United States Patent

Feng et al.

US 9,110,721 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) JOB HOMING
(71) Applicant: TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)
(72) Inventors: Michael Feng, Mountain View, CA
(US); Edmund C. Chen, Sunnyvale, CA
(US); Brian Alleyne, Los Gatos, CA
(US); Edward Ho, Fremont, CA (US)
(73)

Assignee: Telefonaktiebolaget L. M Ericsson

(publ), Stockholm (SE)
*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35

U.S.C. 154(b) by 405 days.

@
(22)

Appl. No.: 13/730,603

Filed: Dec. 28, 2012

(65) Prior Publication Data

US 2014/0189705 Al Jul. 3, 2014

Int. Cl1.
GO6F 9/50
HO4L 12/721
HO4L 12/733
GO6F 9/30
GO6F 9/38
HO4L 12/851
HO4L 12/859
HO4L 12/863
HO4L 12/861
HO4L 12/741
HO4L 12/911
U.S. CL
CPC GO6F 9/5027 (2013.01); HO4L 45/06
(2013.01); HO4L 45/122 (2013.01); GOGF
9/30036 (2013.01); GOGF 9/3885 (2013.01);
HO4L 45/74 (2013.01); HO4L 47/2475
(2013.01); HO4L 47/2483 (2013.01); HO4L
47/6295 (2013.01); H04L 47/70 (2013.01);
HO4L 49/9047 (2013.01)

(51)
(2006.01)
(2013.01)
(2013.01)
(2006.01)
(2006.01)
(2013.01)
(2013.01)
(2013.01)
(2013.01)
(2013.01)
(2013.01)
(52)

Network Element
Line Card 1 400

(58) Field of Classification Search

CPC combination set(s) only.

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,391,786 Bl 6/2008 Prasad et al.

7,990,974 B1* 82011 Gmuenderetal. 370/392
2005/0033878 Al 2/2005 Pangal et al.
2007/0240161 Al 10/2007 Prabhakar et al.
2008/0002681 Al* 1/2008 Bajicetal.cccccoevvnnne. 370/389
2008/0002702 Al* 1/2008 Bajicetal.cccccoevvnne. 370/392
2008/0247411 Al 10/2008 Abel et al.
2009/0235050 Al* 9/2009 Raghunath etal. 712/203

FOREIGN PATENT DOCUMENTS

EP 1414198 4/2004

* cited by examiner

Primary Examiner — Chris Parry

Assistant Examiner — Caroline Jahnige

(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott, LLP

(57) ABSTRACT

A method executed by a controller of a plurality of processing
elements to reduce processing time of a data packet in a
network element. The processing elements are arranged in a
matrix. Each processing element has a point to point connec-
tion with each adjacent processing element, known as a hop.
Each processing element also includes a separate processing
element storage. The data packet includes a data and a
descriptor, the data being transmitted to a first processing
element for storage before the descriptor is received by the
controller, and the data being processed after the descriptor is
received. The method includes receiving the descriptor at the
controller, determining that the first processing element does
not have an available resource for processing the data, deter-
mining a second processing element based on a least number
of hops to the first processing element, and transmitting the
descriptor to the second processing element.

20 Claims, 4 Drawing Sheets

= Ingress Port | Network Processor
S 416

Computing Switch
Mautrix

—» Fabric
412 426

- 424

Line Card n

U.S. Patent

Aug. 18, 2015 Sheet 1 of 4

100

v/

receive a descriptor of a data packet at
the controller

102

determine that a first processing
element does not have the available
resource for processing the data

104
\/—

determine a second processing element
based on a least number of hops to the
first processing element

106
T

transmit the descriptor to the second
processing element

108
\/_

FIG.1

US 9,110,721 B2

US 9,110,721 B2

Sheet 2 of 4

Aug. 18, 2015

U.S. Patent

¢"OM
€® €D €D €0
1SR L=l fLEn S TuoWS[%02
g 8 8 3
U1SS0001] UISS9001] U1S§9001] UISSO001] A e
\ : \ Sunnduo)
(T) @D (A1)
JUSITH JUSWISTH JuSWaTg Ll | 907
SGuisseoarg Suisseoorg Sursseooig Buisseooig SMpoR
, . UOISSTUWISURI,
! A ¥0T
SINPO
(1°e) 19 an (1°0) Surmpayog
JuSweTy JuSWST fLElncic fLElnelie :
Gurssaoorg Surssaooig Surssaooig Juisseooig 70T
SINpPO
Guiareoay
/ / / f
(N3] () (oD (00 002
1SR L=l JUSWS[H |t Ll R[[0nu0)
Guissaoorg Suissaooig Burssaooig Juisseooig

U.S. Patent

Aug. 18, 2015

Sheet 3 of 4

300

v/

US 9,110,721 B2

receive a descriptor of a data packet at the
controller

" 302

receive a unique identifier of the first
processing element where the data of the
network packet resides

304

transmit the
descriptor to the first
processing element

determine whether
the first processing element has
available resources

|

308

306

determine a second processing element
based on a least number of hops to the first
processing element

" 310

transmit the descriptor to the second
processing element

" 312

transmit the unique identifier of the first
processing element to the second
processing element

" 314

FIG. 3

US 9,110,721 B2

Sheet 4 of 4

Aug. 18, 2015

U.S. Patent

¥ "Old
1444 P
U pIR) SU'] -
.
.
.
» JogssaSy ™
Pré4 (444 i
ouqeq XIeN
qonms Sugnduro) 01y
IMPON. 91
TOISSTUISURI], 10859001 JIOMION uog ssorfuy e—
s0% < 5
S[MpoN. ozh 8TY
1414 Sumnpagog STUORIAUNOD
[samosay JI0MIDN
90F { |
S[MPON _ z oum_ﬂmom
Yoy Suaooy e e
soqoguoy ™ |
f 0¥
00t 1 pre) aury
JUSWIATH HIOMPN

US 9,110,721 B2

1
JOB HOMING

FIELD

The embodiments of the invention relate to the field of data
packet processing during the routing of the data packet in a
telecommunications network. Specifically, the embodiments
relate to utilizing a computing matrix to process the routing of
the data packet.

BACKGROUND

A telecommunications network is a collection of end sta-
tions that are connected to each other through communication
channels. An end station is any device capable of communi-
cating with other end stations through the channels. Examples
of'end stations include telephones, fax machines, cell phones,
computers, network enabled printers, and even household
electronics and appliances that are capable of communicating
with other devices across a network. End stations communi-
cate with other end stations by sending data, typically in the
form of a packet, to each other through the channels. In some
networks, the data packets are managed in the channels to
ensure proper delivery of the packets to their intended desti-
nation end stations and conserve bandwidth of the channels
by reducing or eliminating unnecessary transfers to unin-
tended end stations.

A network element placed at a point where multiple chan-
nels connect or intersect is one method of managing the data
packets in the channels. After the network element receives a
data packet transferred by a source end station, the network
element is responsible for processing the data packet. The
processing performed by the network element includes deter-
mining the intended destination of the data packet and trans-
mitting the data packet through the proper channel toward the
destination end station.

Some network elements implement a computing matrix to
reduce the processing time of data packets. A computing
matrix includes multiple processing elements and is capable
of processing multiple data packets simultaneously, one at
each processing element. To further reduce processing time,
some pre-processing can be performed on each data packet
before it is processed by the computing matrix. Additionally,
as part of pre-processing, a major portion of the data packet is
typically extracted and stored at a processing element of the
computing matrix. After pre-processing is complete and the
data packet is ready to be processed by the computing matrix,
current techniques implement strict scheduling to determine
which processing element will perform the processing. Strict
scheduling means that the processing of the data packet is
always assigned to the processing element where the major
portion of the data packet is stored at.

SUMMARY

In one embodiment, a method is executed by a controller of
a plurality of processing elements to reduce processing time
of a data packet in a network element by opportunistically
assigning a processing job to a different processing element
than where a data for the processing job resides. The plurality
of'processing elements are arranged in a matrix with a column
position and a row position. Each of the plurality of process-
ing elements has a point to point connection with each adja-
cent processing element and each processing element
includes a separate processing element storage. The data
packet includes the data and a descriptor. The data is trans-
mitted to a first processing element of the plurality of pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

cessing elements to be stored in a first processing element
storage before the descriptor is received by the controller, and
the data is processed after the descriptor is received. The
method includes receiving the descriptor at the controller. A
determination is made that the first processing element does
not have an available resource for processing the data. A
second processing element of the plurality of processing ele-
ments is determined based on a least number of hops to the
first processing element, a hop being a connection between
two adjacent processing elements. The descriptor is transmit-
ted to the second processing element.

In another embodiment, a controller manages a plurality of
processing elements to reduce processing time of a data
packet in a network element by opportunistically assigning a
processing job to a different processing element than where a
data for the processing job resides. The plurality of process-
ing elements are arranged in a matrix with a column position
and a row position. Each of the plurality of processing ele-
ments has a point to point connection with each adjacent
processing element and each processing element includes a
separate processing element storage. The data packet
includes the data and a descriptor. The data is transmitted to a
first processing element of the plurality of processing ele-
ments to be stored in a first processing element storage before
the descriptor is received by the controller, and the data is
processed after the descriptor is received. The controller com-
prises a receiving module, a scheduling module coupled to
the receiving module, and a transmission module coupled to
the scheduling module. The receiving module is configured to
receive the descriptor. The scheduling module is configured
to determine that the first processing element does not have an
available resource for processing the data. The scheduling
module is further configured to determine a second process-
ing element of the plurality of processing elements based on
a least number of hops to the first processing element, a hop
being a connection between two adjacent processing ele-
ments. The transmission module is configured to transmit the
descriptor to the second processing element.

In an example embodiment, a system employs a computing
matrix to reduce processing time of a data packet in a network
element by opportunistically assigning a processing job. The
data packet includes a data and a descriptor. The data is
received by the computing matrix and stored before the
descriptor is received by the computing matrix. The data is
processed after the descriptor is received by the computing
matrix. The system comprises a plurality of processing ele-
ments configured in a matrix arrangement, and a controller
coupled to the plurality of processing elements. Each of the
plurality of processing elements has a point to point connec-
tion with each adjacent processing element, and each of the
plurality of processing elements includes a separate process-
ing element storage. The controller is configured to receive
the descriptor of the data packet, and determine that a first
processing element of the plurality of processing elements
does not have an available resource for processing the data,
the data residing within a first processing element storage of
the first processing element when the descriptor is received.
The controller is further configured to determine a second
processing element of the plurality of processing elements
based on a least number of hops to the first processing ele-
ment, a hop being a connection between two adjacent pro-
cessing elements, and transmit the descriptor to the second
processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying

US 9,110,721 B2

3

drawings in which like references indicate similar elements.
It should be noted that different references to “an” or “one”
embodiment in this disclosure are not necessarily to the same
embodiment, and such references mean at least one. Further,
when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to effect
such feature, structure, or characteristic in connection with
other embodiments whether or not explicitly described.

FIG. 1 is a flowchart of one embodiment of a process for
opportunistically assigning a processing job of a data packet
to a processing element of a computing matrix.

FIG. 2 is a diagram of one embodiment of a computing
matrix and a controller that opportunistically assigns a pro-
cessing job of a data packet to a processing element of the
computing matrix.

FIG. 3 is a flowchart of one exemplary embodiment of a
process for opportunistically assigning a processing job of a
data packet to a processing element of a computing matrix.

FIG. 4 is a diagram of one embodiment of a system imple-
menting a computing matrix and a controller that opportunis-
tically assigns a processing job of a data packet to a process-
ing element of the computing matrix.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description. In other instances, con-
trol structures, gate level circuits and full software instruction
sequences have not been shown in detail in order not to
obscure the invention. Those of ordinary skill in the art, with
the included descriptions, will be able to implement appro-
priate functionality without undue experimentation.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements, which may or may not be
in direct physical or electrical contact with each other, co-
operate or interact with each other. “Connected” is used to
indicate the establishment of communication between two or
more elements that are coupled with each other.

To facilitate understanding of the embodiments, dashed
lines have been used in the figures to signify the optional
nature of certain items (e.g., features not supported by a given
embodiment of the invention; features supported by a given
embodiment, but used in some situations and not in others).

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
electronic devices. Such electronic devices store and commu-
nicate (internally and/or with other electronic devices over a
network) code and data using non-transitory tangible com-
puter-readable storage medium (e.g., magnetic disks; optical
disks; read only memory; flash memory devices; phase-
change memory) and transitory computer-readable commu-
nication medium (e.g., electrical, optical, acoustical or other
forms of propagated signals—such as carrier waves, infrared
signals, digital signals, etc.). In addition, such electronic
devices typically include a set or one or more processors
coupled with one or more other components, such as a storage
device, one or more input/output devices (e.g., keyboard, a
touchscreen, and/or a display), and a network connection.
The coupling of the set of processors and other components is

10

15

20

25

30

35

40

45

50

55

60

65

4

typically through one or more busses or bridges (also termed
bus controllers). The storage device and signals carrying the
network traffic respectively represent one or more non-tran-
sitory tangible computer-readable medium and transitory
computer-readable communication medium. Thus, the stor-
age device of a given electronic device typically stores code
and/or data for execution on the set of one or more processors
of that electronic device. Of course, one or more parts of an
embodiment of the invention may be implemented using dif-
ferent combination of software, firmware, and/or hardware.

As used herein, a network element (e.g., a router, switch,
bridge) is a piece of networking equipment, including hard-
ware and software, that communicatively interconnects other
equipment on the network (e.g., other network elements, end
stations). Some network elements are “multiple services net-
work elements” that provide support for multiple networking
functions (e.g., routing, bridging, switching, Layer 2 aggre-
gation, session border control, Quality of Service, and/or
subscriber management), and/or provide support for multiple
application services (e.g., data, voice, and video). Subscriber
end stations (e.g., servers, workstations, laptops, netbooks,
palm tops, mobile phones, smartphones, multimedia phones,
Voice Over Internet Protocol (VOIP) phones, user equipment,
terminals, portable media players, GPS units, gaming sys-
tems, set-top boxes) access content/services provided over
the Internet and/or content/services provided on virtual pri-
vate networks (VPNs) overlaid on (e.g., tunneled through) the
Internet. The content and/or services are typically provided
by one or more end stations (e.g., server end stations) belong-
ing to a service or content provider or end stations participat-
ing in a peer to peer service, and may include, for example,
public webpages (e.g., free content, store fronts, search ser-
vices), private webpages (e.g., username/password accessed
webpages providing email services), and/or corporate net-
works over VPNs. Typically, subscriber end stations are
coupled (e.g., through customer premise equipment coupled
to an access network (wired or wirelessly)) to edge network
elements, which are coupled (e.g., through one or more core
network elements) to other edge network elements, which are
coupled to other end stations (e.g., server end stations).

Data transfers across a telecommunications network
depend on a variety of different elements in the network,
including the medium through which the transfers occur and
the devices which facilitate the transfers. One particular
device for facilitating such transfers is a network element. A
network element is placed at points in the network where
communication channels meet or intersect. These channels
can be channels of the same network or channels of different
networks, in which case the network element connects the
different networks together to form a larger network. The
network element is responsible for routing the data, typically
in the form of a packet, to the proper channel for transmission
to the intended destination. This reduces the amount of traffic
on the network by not transmitting the data through unneces-
sary channels.

The embodiments of the invention provide a method and
system for assigning a processing job of a data packet to a
processing element of a computing matrix during the routing
of the data packet. A computing matrix includes multiple
processing elements, and is capable of processing a different
data packet at each processing element simultaneously. The
processing elements are arranged in a matrix topology, each
having a column position and a row position in the matrix.
Processing elements can be implemented using any combi-
nation of software, firmware, and/or hardware. In some
embodiments, each processing element is a distinct hardware
processor or a distinct physical portion of a hardware proces-

US 9,110,721 B2

5

sor. In other embodiments, multiple processing elements are
implemented by firmware or software on a single hardware
processor capable of processing multiple threads of instruc-
tions simultaneously.

Each processing element includes a point to point connec-
tion with each adjacent processing element. A “hop” will be
used hereinafter to denote a connection between two adjacent
processing elements. Additionally, each processing element
includes its own separate processing element storage. The
storage for multiple processing elements can be implemented
on a single memory device by partitioning the device and
assigning a partition to each processing element. Alterna-
tively, each processing element can utilize a separate memory
device for storage. The memory device can be any device
capable of storing data for any amount of time, including
volatile and non-volatile memory devices. Furthermore, the
memory device can be implemented within the processor (i.e.
onthe same chip) or separately as a distinct piece of hardware.
The memory device is coupled with the processing element or
the processor implementing the processing element to allow
data transfers between the processing element and the
memory device.

A data packet typically includes a descriptor portion (also
known as the header) and a user data portion (also known as
the payload). The descriptor contains control information for
the packet, such as the intended destination of the packet. In
contrast, the user data is the substantive portion of the packet
and contains the actual data that is being communicated by
the end stations. Hereinafter, the user data or payload will be
referred to as simply the “data.”

During the processing of a data packet in a network ele-
ment, some pre-processing is typically performed on the data
packet before the computing matrix performs the bulk of the
processing on the packet. As part of this pre-processing, the
data portion of the packet can be extracted and transmitted to
aprocessing element for storage before the packet is ready to
be processed by a processing element of the computing
matrix. In other words, additional pre-processing can be per-
formed on the descriptor of the packet after the data portion
has been extracted and stored. When pre-processing is com-
plete, the descriptor is transmitted to a processing element of
the computing matrix for further processing.

Current network elements that implement a computing
matrix use strict scheduling to determine which processing
element the descriptor will be transmitted to after pre-pro-
cessing is complete. Strict scheduling means that the descrip-
tor will always be transmitted to the same processing element
that the data portion of the packet was transmitted to. The
disadvantages of the prior art include that strict scheduling
can result in oversubscription of the destination processing
element and create an imbalanced load in the computing
matrix.

The embodiments of the present invention overcome the
disadvantages of the prior art by implementing opportunistic
scheduling to determine which processing element the
descriptor will be transmitted to after pre-processing is com-
plete. Opportunistic scheduling takes into account two factors
when determining the destination processing element of the
descriptor. These two factors are (1) the location of the pro-
cessing element that the data portion of the packet was trans-
mitted to and (2) available resources at the destination pro-
cessing element. If the processing element that the data
portion was transmitted to does not have available resources
to process the data packet, the descriptor will be transmitted
to the processing element at the next nearest location that does
have available resources. The advantages of the embodiments
described herein include a higher utilization of the processing

10

15

20

25

30

35

40

45

50

55

60

65

6

elements while minimizing the bandwidth and latency asso-
ciated with the transmission of data between processing ele-
ments.

FIG. 1 is a flowchart of one embodiment of a process for
opportunistically assigning a processing job of a data packet
to a processing element of a computing matrix. The process is
typically implemented in a controller that schedules process-
ing jobs for the computing matrix. The controller can be
implemented through software or firmware on the same pro-
cessor as one or more processing elements. Alternatively, the
controller can be implemented on a hardware processor sepa-
rate from any processing element of the computing matrix.

In one embodiment, the process is started in response to
receiving a descriptor of a data packet at the controller (Block
102). As noted above, by the time the descriptor is received at
the controller, pre-processing has been completed on the
descriptor and the data packet is ready to be processed by the
computing matrix. Furthermore, the data portion of the
packet has been extracted during pre-processing and trans-
mitted to a first processing element of the computing matrix to
be stored in a first processing element storage. It should be
noted that the “first” designation is only used as an identifier
to distinguish one processing element from the other process-
ing elements of the computing matrix. Thus no other meaning
should be implied from the designation. The same holds true
for references to a “second” processing element hereinafter.

After receiving the descriptor, the controller determines
that the first processing element does not have the available
resource for processing the data (Block 104). To make the
determination, the controller has access to information iden-
tifying the first processing element that the data was trans-
mitted to for storage during pre-processing. In one embodi-
ment, a unique identification of the first processing element
can be written into the descriptor during pre-processing.
Thus, when the controller receives the descriptor, the control-
ler can identity the first processing element. In another
embodiment, the unique identification of the first processing
element can be written to a memory device coupled with the
controller such that the controller can access the memory
device to obtain the information.

The controller also has access to information regarding the
availability of resources for the first processing element. In
one embodiment, the controller can transmit a query to
request the status of the first processing element with regards
to the availability of resources. This query can be transmitted
to the first processing element, or to a different module or
processor that maintains an account for the resources of the
first processing element. After transmitting the query, the
controller receives a response to the query indicating whether
the first processing element has the available resource. In
another embodiment, the controller itself can maintain an
account for the resources of the first processing element, such
that no query is necessary.

After obtaining information regarding the availability of
resources for the first processing element, the controller
determines that the first processing element does not have the
available resource to process the data. Alternatively, the deter-
mination can be made at the module or processor that main-
tains the account for the resources of the first processing
element, and only the result of the determination is transmit-
ted to the controller.

Furthermore, the determination can be made using several
different criteria. In one embodiment, the determination that
the first processing element does not have the available
resource to process the data is made if the processing queue of
the first processing element is full. Alternatively, a threshold
setting can be used such that the determination is made if the

US 9,110,721 B2

7

amount of processing already assigned to the first processing
element is above the threshold.

At Block 106, the controller determines a second process-
ing element based on a least number of hops to the first
processing element. As noted above, a hop is a connection
between two adjacent processing elements. Thus, the least
number of hops to the first processing element is the number
of connections that must be traversed to reach the first pro-
cessing element through the shortest path (see FIG. 2 and the
related discussion below for more details regarding the least
number of hops). Depending on the location of the first pro-
cessing element and the total number of processing elements
in the computing matrix, there can be up to four processing
elements that are one hop away from the first processing
element. In one embodiment, the controller also checks the
availability of resources for each processing element that
have an equal least number of hops to the first processing
element in order to determine the second processing element.
For example, ifthere are four processing elements that are one
hop away from the first processing element, the controller can
check the availability of resources for each of the four pro-
cessing elements. If all four of the processing elements do not
have the available resource, this process can be iterated for
processing elements at each ascending level of least number
of'hops to the first processing element until a second process-
ing element is determined.

Furthermore, to determine the least number of hops to the
first processing element for any other processing element of
the computing matrix, the controller has access to location
information regarding each ofthe processing elements. In one
embodiment, the unique identification of the processing ele-
ments can be used to determine the location of each process-
ing element in the matrix. In other words, the unique identi-
fication of each processing element can be assigned such that
the unique identification provides an indication of the loca-
tion in the matrix (e.g., the unique identification can include
the column and row position). Alternatively, a table or some
other form of a record can be maintained which include the
location information for each processing element, and the
controller can look up the information based on the unique
identification.

After determining the second processing element, the con-
troller transmits the descriptor to the second processing ele-
ment (Block 108). In one embodiment, the unique identifica-
tion of the first processing element is transmitted along with
the descriptor to the second processing element. This enables
the second processing element to determine where the data
portion of the packet that corresponds with the descriptor is
stored. Thus, ifthe second processing element needs access to
the data portion of the packet during processing, the second
processing element can transmit a request to the first process-
ing element. Depending on the processing performed, the
request can be a write request or a read request. In another
embodiment, the second processing element can access a
memory device that stores the unique identification of the first
processing element, and thereby determine where the data
portion of the packet is stored.

FIG. 2 is a diagram of one embodiment of a computing
matrix 208 and a controller 200 that opportunistically assigns
a processing job of a data packet to a processing element of
computing matrix 208. Computing matrix 208 includes four
columns (0-3) and four rows (0-3), with a processing element
ateach column and row position. Thus, computing matrix 208
has 16 locations (4 columns*4 rows) and 16 processing ele-
ments in this embodiment. In other embodiments, a comput-
ing matrix can have any number of columns, rows, and pro-
cessing elements. Furthermore, the number of columns does

30

40

45

8

not have to equal the number of rows and there does not have
to be a processing element at each location of the matrix.

Each processing element is implemented by a network
processor; however a network processor can implement mul-
tiple processing elements. The network processor can be any
type of processing device including a general or central pro-
cessing unit, an application specific integrated circuit (ASIC)
or similar processing device. In other embodiments, a set of
network processors are present in the network element. The
network processor can be connected with the other compo-
nents within the network element by a set of buses routed over
a set of mainboards or similar substrates. Similarly, multiple
processing elements implemented on a single network pro-
cessor can be connected with each other and with a storage
device by a set of buses.

Controller 200 is also implemented by a network proces-
sor. In some embodiments, controller 200 can be imple-
mented by the same network processor as one or more pro-
cessing elements. The network processor executes the
modules of controller 200. Controller 200 can be connected
with the processing elements and with other components
within the network element by a set of buses.

Controller 200 includes receiving module 202, scheduling
module 204, and transmission module 206. Receiving mod-
ule 202 is configured to receive a descriptor of a data packet
after pre-processing is complete. When the descriptor is
received at receiving module 202, the data portion of the
packet has already been extracted and transmitted to a first
processing element of the computing matrix for storage.
Scheduling module 204 is coupled to receiving module 202
and configured to determine that the first processing element
does not have the available resource for processing the data.
Scheduling module 204 also determines a second processing
element based on a least number of hops to the first processing
element. Transmission module 206 is coupled to scheduling
module 204 and configured to transmit the descriptor to the
second processing element after the second processing ele-
ment has been determined.

To assist with the understanding of the concept of least
number of hops, an example embodiment is described.
Assuming that the data portion of a data packet is transmitted
to processing element (1, 1) for storage during pre-process-
ing, processing element (1, 1) becomes the first processing
element in this embodiment. Processing elements (0, 1), (1,
0), (2,1),and (1, 2) all have a least number of hops to the first
processing element equal to one. This is because these four
processing elements are all adjacent to the first processing
element, thus the first processing element can be reached by
traversing only one hop. Although it is also possible to reach
the first processing element while traversing more than one
hop from any of these four processing elements (e.g., starting
from processing element (0, 1), go to (0, 0), then to (1, 0), then
to (1, 1), which traverses three hops to reach the first process-
ing element), only the least number of hops is of interest.
Processing elements (0, 0), (2, 0), (3, 1), (2,2), (1, 3), and (0,
2) all have two hops as the least number of hops to the first
processing element (1, 1). Processing elements (3, 0), (3, 2),
(2, 3), and (0, 3) all have three hops as the least number of
hops to the first processing element (1, 1). Processing element
(3, 3) has four hops as the least number of hops to the first
processing element (1, 1).

FIG. 3 is a flowchart of one exemplary embodiment of a
process for opportunistically assigning a processing job of a
data packet to a processing element of a computing matrix.
This process is typically implemented in a controller that
schedules processing jobs for the computing matrix.

US 9,110,721 B2

9

In one embodiment, the process is started in response to
receiving a descriptor of a data packet at the controller (Block
302). By the time the descriptor is received at the controller,
the data portion of the packet has been extracted during pre-
processing and transmitted to a first processing element of the
computing matrix to be stored in a first processing element
storage.

The controller also receives a unique identifier of the first
processing element where the data portion resides (Block
304). The unique identifier can be received as part of the
descriptor or it can be received separately from the descriptor.

Using the unique identifier, the controller makes a deter-
mination of whether the first processing element has available
resources for processing the data (Block 306). The determi-
nation can be based on whether the processing queue of the
first processing element is full. Alternatively, a threshold set-
ting can be used in making the determination based on
whether the amount of processing already assigned to the first
processing element is above the threshold.

If it is determined that the first processing element does
have available resources, then the process goes to Block 308.
The descriptor is transmitted to the first processing element
for processing and the process is complete.

Ifit is determined that the first processing element does not
have available resources for processing the data, the process
goes to Block 310. The controller determines a second pro-
cessing element based on a least number of hops to the first
processing element. In one embodiment, the controller also
checks the availability of resources for each processing ele-
ment having an equal least number of hops to the first pro-
cessing element. This can be done iteratively starting with
processing elements that have a least number of hops equal to
one. If none of the processing elements one hop away from
the first processing element have available resources, the
process is repeated in ascending order based on the least
number of hops to the first processing element until a second
processing element is determined.

After determining the second processing element, the con-
troller transmits the descriptor to the second processing ele-
ment for additional processing (Block 312). In one embodi-
ment, the unique identification of'the first processing element
is transmitted along with the descriptor to the second process-
ing element (Block 314). The second processing element can
use the unique identification to determine the location of the
first processing element. This enables the second processing
element to transmit requests to the first processing element,
including write requests or read requests, in order to access
the data portion of the packet.

FIG. 4 is a diagram of one embodiment of a system imple-
menting a computing matrix 412 and a controller 404 that
opportunistically assigns a processing job of a data packet to
a processing element of computing matrix 412. In this
embodiment, the system is implemented in a network element
400. More specifically, the system is implemented on a first
line card 402 of network element 400. A network element
typically includes multiple line cards, depicted in this Figure
by the n” line card 424. The line cards can be connected to
each other through switch fabric 426, which performs switch-
ing to route data packets between line cards.

Although not depicted in this diagram, computing matrix
412 includes multiple processing elements. In this embodi-
ment, computing matrix 412 is implemented by a network
processor. In other embodiments, computing matrix 412 can
be implemented by multiple network processors. Line card
402 also includes a first resource 414, among other compo-
nents. The processing element storage for each processing
element can be implemented on first resource 414 by parti-

10

15

20

25

30

35

40

45

50

55

60

65

10

tioning first resource 414 and assigning a partition to each
processing element. Alternatively, additional resources can
be added for implementing processing element storage for
each processing element. First resource 414 can be any
memory device capable of storing data for any amount of
time, including volatile and non-volatile memory devices.

Controller 404 can be implemented by the same network
processor as computing matrix 412. Alternatively, controller
404 can be implemented by a separate network processor.
Controller 404 includes receiving module 406, scheduling
module 408, and transmission module 410. Each module is
executed by the network processor implementing controller
404. Receiving module 406 is configured to receive a descrip-
tor of a data packet after pre-processing is complete. Sched-
uling module 408 is coupled to receiving module 406 and
configured to determine that a first processing element that
has the data stored does not have the available resource for
processing the data. Scheduling module 408 also determines
a second processing element based on a least number ofhops
to the first processing element. Transmission module 410 is
coupled to scheduling module 408 and configured to transmit
the descriptor to the second processing element after the
second processing element has been determined.

Line card 402 can also include network processor 416 for
performing the pre-processing on data packets. In other
embodiments, network processor 416 can also implement
controller 404 and/or computing matrix 412. A second
resource 418 can also be implemented on line card 402 as a
memory device for network processor 416. In another
embodiment, first resource 414 and second resource 418 can
be the same memory device, each resource being a partition of
the memory device. Like first resource 414, second resource
418 can be any memory device capable of storing data for any
amount of time, including volatile and non-volatile memory
devices.

Line card 402 can also include an ingress port 420 for
receiving incoming data packets and egress port 422 for trans-
mitting outgoing data packets. Ingress port 420 can be any
type or combination of networking ports including wireless
or wired connection/communication ports and associated
hardware and software for processing incoming layer 1 and/
or layer 2 data and control traffic. Ingress port 420 thereby
connects network element 400 with any number of network
devices and/or computing devices through one of network
connections 428. Similarly, egress port 422 can be any type or
combination of networking ports including wireless or wired
connection/communication ports and associated hardware
and software for processing outgoing layer 1 and/or layer 2
data and control traffic. Egress port 422 thereby connects
network element 400 with any number of network devices
and/or computing devices through one of network connec-
tions 428. In some embodiments, ingress port 420 and egress
port 422 can be implemented as a single port capable of
performing both receiving and transmitting, typically known
in the field as a transceiver module port.

After receiving an incoming data packet, ingress port 420
transmits the data packet to network processor 416 for pre-
processing. During pre-processing, the data portion of the
packet is transmitted to a first processing element of comput-
ing matrix 412 for storage. When pre-processing is complete,
the descriptor of the data packet is transmitted to controller
404. Controller 404 assigns the descriptor to a processing
element of computing matrix 412 according to any one of the
embodiments described herein. After processing is complete
at computing matrix 412, the data packet is transmitted to a
destination line card (e.g., n” line card 424) through switch
fabric 426 for outgoing transmission. In some cases, the des-

US 9,110,721 B2

11

tination line card can be the same as the receiving line card.
Additional processing can be performed at the destination
line card before the data packet is transmitted back out into
the network through an egress port on one of network con-
nections 428. In this manner, network element 400 performs
processing on each data packet received and thereby routes
the data packet to the proper communication channel for
delivery to its intended destination end station.

It is to be understood that the above description is intended
to be illustrative and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the inven-
tion should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:

1. A method executed by a controller of a plurality of
processing elements to reduce processing time of a data
packet in a network element by opportunistically assigning a
processing job to a different processing element than where a
data for the processing job resides, where the plurality of
processing elements are arranged in a matrix with a column
position and a row position, where each of the plurality of
processing elements has a point to point connection with each
adjacent processing element, where each processing element
includes a separate processing element storage, where the
data packet includes the data and a descriptor, where the data
is transmitted to a first processing element of the plurality of
processing elements to be stored in a first processing element
storage before the descriptor is received by the controller, and
where the data is processed after the descriptor is received, the
method comprising the steps of:

receiving the descriptor at the controller;

determining that the first processing element does not have

an available resource for processing the data;
determining a second processing element of the plurality of
processing elements based on a least number of hops to
the first processing element, wherein a hop is a connec-
tion between two adjacent processing elements; and
transmitting the descriptor to the second processing ele-
ment.

2. The method of claim 1, further comprising the step of:

determining the second processing element within a sec-

ond plurality of processing elements based on an amount
of processing assigned to each of the second plurality of
processing elements, wherein each of the second plural-
ity of processing elements has an equal least number of
hops to the first processing element.

3. The method of claim 1, wherein determining that the first
processing element does not have the available resource for
processing the data further comprises the steps of:

transmitting a query to request a status of the first process-

ing element; and

receiving a response to the query indicating whether the

first processing element has the available resource for
processing the data.

4. The method of claim 1, further comprising the steps of:

receiving a unique identifier of the first processing element

along with the descriptor at the controller; and
determining a location of the first processing element
based on the unique identifier.

5. The method of claim 4, further comprising the step of:

transmitting the unique identifier of the first processing

element along with the descriptor to the second process-
ing element.

10

15

20

25

30

35

40

45

50

55

60

65

12

6. The method of claim 1, wherein determining that the first
processing element does not have the available resource for
processing the data further comprises the step of:

determining that the first processing element is at a thresh-
old level for an amount of processing assigned to the first
processing element.

7. A controller for managing a plurality of processing ele-
ments to reduce processing time of a data packet in a network
element by opportunistically assigning a processing job to a
different processing element than where a data for the pro-
cessing job resides, wherein the plurality of processing ele-
ments are arranged in a matrix with a column position and a
row position, wherein each of the plurality of processing
elements has a point to point connection with each adjacent
processing element, wherein each processing element
includes a separate processing element storage, wherein the
data packet includes the data and a descriptor, wherein the
data is transmitted to a first processing element of the plurality
of processing elements to be stored in a first processing ele-
ment storage before the descriptor is received by the control-
ler, and wherein the data is processed after the descriptor is
received, the controller comprising:

a processor; and

a memory storing a plurality of modules comprising
instructions for execution on the processor, the plurality
of modules including:

a receiving module configured to receive the descriptor;

a scheduling module coupled to the receiving module and
configured to determine that the first processing element
does not have an available resource for processing the
data, and further configured to determine a second pro-
cessing element of the plurality of processing elements
based on a least number of hops to the first processing
element, wherein a hop is a connection between two
adjacent processing elements; and

a transmission module coupled to the scheduling module
and configured to transmit the descriptor to the second
processing element.

8. The controller of claim 7, wherein the scheduling mod-
ule is further configured to determine the second processing
element within a second plurality of processing elements
based on an amount of processing assigned to each of the
second plurality of processing elements, wherein each of the
second plurality of processing elements has an equal least
number of hops to the first processing element.

9. The controller of claim 7, wherein the scheduling mod-
ule is further configured to transmit a query to request a status
of the first processing element and receive a response to the
query indicating whether the first processing element has the
available resource for processing the data.

10. The controller of claim 7, wherein the receiving module
is further configured to receive a unique identifier of the first
processing element along with the descriptor at the controller,
and wherein the scheduling module is further configured to
determine a location of the first processing element based on
the unique identifier.

11. The controller of claim 10, wherein the transmission
module is further configured to transmit the unique identifier
of'the first processing element along with the descriptor to the
second processing element.

12. The controller of claim 7, wherein the scheduling mod-
ule determines that the first processing element does not have
the available resource for processing the data by determining
that the first processing element is at a threshold level for an
amount of processing assigned to the first processing element.

13. A system for employing a computing matrix to reduce
processing time of a data packet in a network element by

US 9,110,721 B2

13

opportunistically assigning a processing job, wherein the data
packet includes a data and a descriptor, wherein the data is
received by the computing matrix and stored before the
descriptor is received by the computing matrix, and wherein
the data is processed after the descriptor is received by the
computing matrix, the system comprising:

a plurality of processing elements configured in a matrix
arrangement, wherein each ofthe plurality of processing
elements has a point to point connection with each adja-
cent processing element, and wherein each of the plu-
rality of processing element includes a separate process-
ing element storage; and

a controller coupled to the plurality of processing elements
and configured to receive the descriptor of the data
packet, determine that a first processing element of the
plurality of processing elements does not have an avail-
able resource for processing the data, determine a sec-
ond processing element of the plurality of processing
elements based on a least number of hops to the first
processing element, and transmit the descriptor to the
second processing, wherein the data resides within a first
processing element storage of the first processing ele-
ment when the descriptor is received, and wherein a hop
is a connection between two adjacent processing ele-
ments.

14. The system of claim 13, wherein the controller is fur-
ther configured to determine the second processing element
within a second plurality of processing elements based on an
amount of processing assigned to each of the second plurality
of processing elements, wherein each of the second plurality
of processing elements has an equal least number of hops to
the first processing element.

10

15

20

25

14

15. The system of claim 13, wherein the controller is fur-
ther configured to transmit a query to request a status of the
first processing element and receive a response to the query
indicating whether the first processing element has the avail-
able resource for processing the data.

16. The system of claim 13, wherein the controller is fur-
ther configured to receive a unique identifier of the first pro-
cessing element along with the descriptor, determine a loca-
tion of the first processing element based on the unique
identifier, and transmit the unique identifier along with the
descriptor to the second processing element.

17. The system of claim 13, wherein the controller deter-
mines that the first processing element does not have the
available resource for processing the data by determining that
the first processing element is at a threshold level for an
amount of processing assigned to the first processing element.

18. The system of claim 13, wherein the second processing
element is configured to process the data in response to
receiving the descriptor.

19. The system of claim 13, wherein the second processing
element is configured to generate an access request for the
data and transmit the access request to the first processing
element, the access request including at least one of a read
request and a write request.

20. The system of claim 13, further comprising an egress
port coupled to one of the plurality of processing elements
and configured to receive the data packet after processing and
transmit the data packet into a telecommunications network.

#* #* #* #* #*

